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9 th International Conference on Numerical Ship Hydrodynamics

Ann Arbor, Michigan, August 5-8, 2007

Maneuvering Simulation of Sea Fighter
Using A Fast Nonlinear Time Domain Technique

David E. Hess1, William E. Faller 2, Lisa Minnick1 , and Thomas C. Fu'
('Naval Surface Warfare Center, Carderock Division,

2Applied Simulation Technologies)

ABSTRACT and ultrasonic wave height sensors. Results

Efforts to develop and mature a nonlinear comparing the 6-dof measured response of Sea
Fighter operating in sea states 4 & 5 are presentedtime domain technique, based on a fast recursive and compared with simulation predictions. A

neural network approach, to simulate the six degree- successful faster-than-real-time simulation capability

of-freedom (6-dof) motion of a ship in wind and in waves will lead to advanced control strategies such

waves are continuing. Here we describe work to
develop a simulation for the Office of Naval as predictive control and path planning as well as the
Research (ONR) high speed experimental vessel, Sea development of virtual sensor systems for real-time
Fighter (FSF-1). Results are presented comparing analytic redundancy of sensor readings utilized by
FhtmeraResu lts are presponseofSenFigte copaing control systems, (Faller, et al. 2007). A successful
the measured 6-dof response of Sea Fighter operating simulation of the baseline vehicle can also be used to
at sea ins s tates 4 & 5 with simulation predictions, examine the potential impact that design changes to
The results show that open loop predictions of speed, the vehicle can have on maneuvering, (Faller, et a!.

pitch, heading and trajectory are quite accurate. The 2005, 2006).

predictions for the very small roll angles are not as

good indicating that improvements are still needed. Sea Fighter is a high-speed experimental
Nevertheless, these early results demonstrate an vessel, developed by the Office of Naval Research,
emerging capability for predicting 6-dof ship motions and is shown below in Fig. 1. Christened in 2005,
for full scale vehicles in irregular waves, she is an aluminum catamaran with two 5500 HP
INTRODUCTION diesel engines and two gas turbines rated at 34 kHP.

The vehicle has a length of 262 ft, a beam of 72 ft
This work builds upon previous nascent and a draft of only 11.5 ft, displacing 960 metric tons.

efforts to simulate a model ship operating in large- The Sea Fighter has four steerable Kamewa water
amplitude regular waves, (Hess, et al., 2006b). In jets. Additionally, the Sea Fighter has an installed
contrast to that effort, the current full scale vehicle science package of strain gauges, accelerometers,
has a catamaran hull design, is equipped with water pressure gauges, and underwater viewing windows.
jets versus propellers and is operating in a random
wave field. The modeling challenges posed by these
differences are discussed. A key element of the
approach is a Recursive Neural Network (RNN)
which serves as the rapid response ship simulation
engine. Experimental time history data required to
train the RNN were acquired on Sea Fighter during
the Rough Water Trial conducted in April, 2006,
(Bachman and Powell, 2006). The data include 6-dof
ship trajectory, motions and rates from onboard gyros
and a GPS compass unit. Also measured were
relative wind speed and direction. Critical to the
modeling effort is the extensive amount of data on
the ambient wave field around the vessel that was
also acquired. These data include wave amplitude,
wavelength and direction obtained from buoys as Figure 1. ONR, Sea Fighter (FSF-1).
well as with the Wave Monitoring System (WaMoS)



The purpose of the rough water trial was to
obtain full-scale qualitative and quantitative
hydrodynamic data of a high-speed naval multi-hull
in high sea states for CFD tool development and
validation. Of primary interest were data associated
with slamming events, including forces, motions, and
measurement of the impacting wave and ambient
conditions (Fu, et al., 2007). The trial took place off
of the California coast with the ship traveling at
speeds varying from 20-40 kn. The ship's course
was varied in order to collect data at multiple
headings relative to the ambient wave field. Near
field wave data were measured by ultrasonic wave
height sensors and the LIDAR system deployed off
of the bow, and the WaMoS radar system provided
wave information out to 1 nm. The substantial
amount of data documenting the 6-dof state of the
vehicle as well as the ambient wind and wave
conditions makes this an ideal data set for further
developing and training the neural network based
simulation capability.

The next section will provide some details
of the trial and will describe the data that were Figure 2. Sea Fighter course during April 2006 trial.
collected. A substantial amount of effort was
required to combine the data from the various
systems, synchronize the data to a common time base __

and prepare it for use as training data. These details I lb

are described next.

DATA PROCESSING

The Sea Fighter was tested 18-21 April
2006 during a transit from Port Angeles, WA to San
Diego, CA. Figure 2 shows a rough sketch of the
course taken during the trial. The half circle and
irregular path shown south of the Oregon/California
border was conducted for the purpose of collecting
maneuvering data at a variety of headings to the local
wave field. Figure 3 shows a more detailed plot of
the maneuvering portion of the trial. The blue line
represents the course and is essentially comprised of Figure 3. Sea Fighter maneuvering course.
twelve legs, each at a different heading to the waves. motion package as well as three Litton LN200s were
The vehicle spent a substantial amount of time on on board to record the ship's motions. Ship
each leg; to reduce the size of the resulting training maneuvering data and water jet data were recorded
data files, shorter segments were removed from each by onboard instruments. In addition, wave height
leg. The red sections superimposed on each leg data were collected by a shipboard TSK Wave Height
denote the part of the course from which data was
extracted. In total, data for twenty-four controlled metercwhere TsK efers o The Japansemanufacturer, Tsurumi-Seiki, Co. The TSK system
heading maneuvers, two for each leg, were compiled. is a motion-compensated microwave CW Doppler
Ten of the runs were at 10 m/s (20 kn), ten were at radar system, which uses a coherent continuous wave
20 m/s (40 kn), two were at 1.5 m/s (3 kn) and two waveform to measure the Doppler shift caused by the
were at 3 m/s (6 kn). Table I provides the segment velocity of the sea surface relative to the radar. The
numbers marked in Figure 3 and the corresponding systems and channels documenting ship motions are
run numbers. discussed next.

The maneuvering data were compiled from
three separate sources. A combined GPS and inertial



Table 1. Segments and corresponding run numbers. Using this definition, a positive x distance is defined
to the east, y is positive southward, and z is positive

Segment Run # Segment Run # downward into the earth, as shown in Figure 4.
la 125a 7a 132a
lb 125b 7b 132b N, 0°

2a 126a 8a 135a
2b 126b 8b 135b
3a 127a 9a 136a
3b 127b 9b 136b W, 2700 lo E, 900
4a 128a 10a 137a x
4b 128b 10b 137b
5a 129a Ila 138a
5b 129b 1lb 138b
6a 130a 12a 139a S, 1800

6b 130b 12b 139b Y

Ship Motions Figure 4. Course coordinate system.

Combined GPS and Inertial Motion Package LN 200
Three Litton LN200s were installed aboard the

near the vessel centerline and slightly aft of the Sea Fighter. Each LN200 is an inertial measurement
nea th veselcenerlne nd ligtlyaftof he unit consisting of three fiber optic gyos and three

second forward-most watertight bulkhead as shown g o gyr
linear accelerometers. Table 2 provides a completein Figure 5. The motion package consisted of a gyro list of the data collected by these packages. An

SEn A orient and a sessor (DMCPU.Tha LN200 was mounted in the bow of each hull (port
SUPERSTAR II GPS, and a Persistor CF2 CPU. The adsabad ln h ulscneln n h

3DM-XI ensr cnsits o thee nguar ate and starboard) along the hull's centerline and the3DM-GX1 sensor consists of three angular rate

gyros, three orthogonal DC accelerometers, three third package was mounted in the Mission Bay

orthogonal magnetometers, and a multiplexer. The starboard of the vessel centerline as shown in
gyros track dynamic orientation while the Figure 5. This allowed for the motion of each hullgyroshatracktdynamicaorientatione whilentheag
accelerometers and magnetometers track static and that of the overall ship to be examined and

orientation. The 3DM-GX1 combines the static and compared. The three LN200 inertial motion units

dynamic responses in real time and records 20 provided linear and angular accelerations, angular
samples per second. The SUPERSTAR 11 GPS rates, roll, pitch, and heading data all taken at asampes pr scond Th SUPRSTR IIGPSsampling rate of 200 Hz. The third LN200 was used
provides position, velocity, and time data once every tcmpile te maneuvering d ecus iis ced

secod. he F2 unson bttey pwerand to compile the maneuvering data because it is located
secnd. TheCF2run o bater poer nd closest to the vessel centerline and CG. The

combines and stores the collected data on a flash coett h eslcneln n G h
diskAcomes and isto the ledata o ay fas coordinate system of the unit coincides with the ship
disk. A complete list of the data recorded by this codnt ytmadi hw nFgr ;xi
package is provided in Table 2. coordinate system and is shown in Figure 5; x is

positive towards the bow, y is positive starboard, and

The longitude and latitude outputs from the z is positive downward.
combined GPS/Motion Package are used to track the
ship's course as shown in Figure 3. For use in the The LN200 directly measures roll and pitch
simulation these outputs needed to be translated into motions, but yaw was calculated from the LN200
x and y distances measured from an inertial heading data. Te he ading data is based on a
coordinate system. The origin of this system was set coorte Te where 0 der s s aie wi
at the free surface at a position given by -125.10 tren ate aw , in er of te 3 ship
longitude and 39.6' latitude, which is the lower right
hand corner of the plot shown in Figure 3. These Yaw = Heading- 90' (3)
outputs were translated into x and y displacements
using Eqs. I and 2. The conversions from degrees Water Jet Data
latitude/longitude are based on the recorded latitude The Sea Fighter is equipped with four
and longitude location of the ship. steerable Kamewa water jets. Shipboard instruments

x(m) = (long - long) .85,274.88 m/long (1) provided water jet data, RPM and nozzle angle,
throughout the trial. A zero degree nozzle angle

y(m) = (lat - lat o).111,317.15 m/lat (2) corresponds to a position where the water jets are



parallel with the vessel centerline. A positive nozzle TSK Shipborn Wave Height Meter
angle corresponds with a starboard turn when the Wave height data were collected by a TSKnozzle is deflected starboard. Wv egtdt eecletdb S

wave height meter, which is a shipboard instrument

LN 200 GPS/Inertial Motion Package designed to measure wave heights and periods. The
system consists of a sensor unit, accelerometer,

i .connections box, and a signal processor. The sensor
is mounted directly above the waves to be measured

2 :and uses microwaves to detect its target. It has a

wave height range of+14.5 m, resolution of 1.4 cm, a
period range of 0 to 20 seconds, and its data includes
a Doppler shift due to the sea surface motion. The
accelerometer removes ship motion from theC2-. . .amplitude measurements and the signal processor

I ¢ L2:0 converts the raw data it receives from the connections
LN200 and Ship box into a useable form. It integrates the Doppler

Coordinate System motion data to obtain wave amplitude data and then

integrates the accelerometer data twice to determine
vertical ship motion. The ship motion is then
subtracted from the processed sensor data to

Figure 5. Locations of ship motion packages. determine the actual wave amplitude.

Table 2. Summary of data collected by LN200 and Motion & Maneuvering Data Synchronization

GPS/Inertial motion package. Since data was collected from a variety of
instruments, each with their own sampling rate, all of

LN0 Packae the data had to be synchronized. Therefore, the data
were all converted to a common 20 Hz sampling rate.

Heading __ This was accomplished by reading in each original
Pitch _ _ _ _ set of data and curve fitting the data using a spline fit
Roll _ _ _ _ or linear interpolation to produce 20 data points for
Yaw ______every second of data. Table 3 provides a summary of

X Linear Acceleration compiled maneuvering data and lists the instrument

Y Linear Acceleration that provided the data.

Z Linear Acceleration This final set of collated data was then

X Angular Acceleration passed through a series of FORTRAN codes to

Y Angular Acceleration accomplish the following steps:

Z Angular Acceleration * Fix yaw to remove 2;T transitions. (Allows
X Angular Rate yaw to be differentiated.)

Y Angular Rate * Derive any missing variables. (Includes

Z Angular Rate differentiation and transformation from

Latitude inertial to moving coordinate system

Longitude attached to the ship.)
Altitude 0 Perform a spectral analysis of all variables
AudSed to determine filter cutoff frequencies.

G Low-pass filter all variables to remove
Track Angle noise. (Use non-recursive digital filters in

N. Velocity software.)
E. Velocity 0 Verify mathematical consistency of all

variables.
V. Velocity * Write output files to be read by neural

Date __ _network codes.

Time _ _



Table 3. Summary of maneuvering data and sources. A recursive network is one that employs
feedback; namely, the information stream issuing

Roll LN 200 from the outputs is redirected to form additional
Pitch LN 200 inputs to the network. The RNN is used to predict
Yaw derived from LN 200 Heading the time histories of maneuvering variables of Sea

X Linear Accel LN 200 Fighter conducting maneuvers in sea states 4 & 5 at a
Y Linear Accel LN 200 variety of wave encounter angles. These maneuvers

Z Linear Accel LN 200 have been used to train and validate the neural

* Angular Rate LN 200 network. Upon completion of training, data from
maneuvers not included in the set of training

Y Angular Rate LN 200 maneuvers are input into the simulation, and
Z Angular Rate LN 200 predictions of the motion of the vehicle are obtained.

X Angular Accel LN 200 The input data required for the vehicle consists of
Y Angular Accel LN 200 time histories of the control variables: jet speed
Z Angular Accel LN 200 (measured by RPM), nozzle angles, port and

Heading LN 200 starboard skeg angles, along with the initial
conditions of the vehicle at some prescribed starting
location. As the simulation proceeds, these inputs are

X derived from Motion combined with past-predicted values of the outputs to
Package/GPS longitude estimate the forces and moments that are acting on

Y derived from Motion the vehicle. The resulting outputs are predictions of
the time histories of the state variables: linear andZ Motion Package/GPS angular velocity components, which can then be

Speed Motion Package/GPS integrated to obtain trajectory and attitude, and
Nozzle Angles Water Jet data differentiated to recover the accelerations acting on

RPM Water Jet data the vehicle.

The specification of the wave field: heading
angle, frequency and amplitude for each component

The nonlinear time domain simulation must be provided. Input forces and moments using
employs a recursive neural network as a these quantities have been implemented. Thus, the
computational technique for developing time- neural network uses forces and moments acting on
dependent nonlinear equation systems that relate the vehicle (both from the controls and from the
input control variables to output state variables. A environment) and translates it into vehicle motion.
diagram indicating the various components of the Predictions of such variables as trajectory
simulation approach is given in Figure 6. components, speed, heading, roll and pitch will be

provided in the results section.

Wid avs6-DOF Trajectory
State Variables & Attitude

u(t) x(t)
v(t) At)

Control 3 p(t) p(t)
Signals MdlsP Pt

q(t) o(t)
r(t)

Initial
Conditions

Figure 6. Schematic of Simulation Technique



The architecture of the recursive neural when no outputs are available, these inputs are filled
network is illustrated schematically in Figure 7. The with initial conditions. The time step at each
network consists of four layers: an input layer, two iteration represents a step in dimensionless time,
hidden layers and an output layer. Within each layer A t' . Time is rendered dimensionless using the
are nodes, which contain a nonlinear transfer function ship's length and its speed computed from the

preceding iteration; thus, the dimensionless time step
-- Feed Forward Hidden Layer(s) represents a fraction of the time required for the flow

Connections F _r- Output Layer to travel the length of the hull. The neural network is

- stepped at a constant rate in dimensionless time
Input -1 [ I p redicted through each maneuver. Thus, an input vector at the
Vector Output Vector dimensionless time, t, produces the output vector at

t' + A t', where

A t g(t')
4- Recursive (Recurrent) t' + At' = t' + and At' =0.07 . (5)

Connections L

Figure 7. Recursive neural network. Because ship speed, U(t) , varies while length, L, is
constant, the spacing between samples, At, must

that operates on the input to the node and produces a vary in order that the dimensionless time step, At'
smoothly varying output. The binary sigmoid
function was used for this work; for input x ranging remain constant at the chosen value of 0.07.
from -oo to oo, it produces the output y which varies The recursive neural network described here
from 0 to 1 and is defined by has 91 inputs for maneuvers in waves. Each hidden

layer contains 74 nodes, and each of these nodes uses
1 a bias. The output layer consists of 6 nodes, and does

y(x)-l+e- (4) not use bias units. The network contains 154
computational nodes and a total of 12,802 weights

Note that the nodes in the input layer simply serve as and biases. The input vector, described in detail
a means to couple the inputs to the network; no below, consists of a series of forces and moments
computations are performed within these nodes. The which act on the vehicle, and the network then
nodes in each layer are fully connected to those in the predicts at each time step dimensionless forms of the
next layer by weighted links. As data travels along a six state variables: three linear velocity components
link to a node in the next layer it is multiplied by the u, v, and w, and three angular velocity components p,
weight associated with that link. The weighted data q and r. Specifically, the outputs are defined as
on all links terminating at a given node is then
summed and forms the input to the transfer function u(t'+ At')
within that node. The output of the transfer function u'(t+ At) U(t') , vand w'similar

then travels along multiple links to all the nodes in .(6)
the next layer, and so on. So, as shown in Figure 7, p'(t' + A t') - p(t' + A t') L qand r'similar
an input vector at a given time step travels from left U(t')
to right through the network where it is operated on These velocity predictions are then used to compute,
many times before it finally produces an output at each time step, the remaining kinematic variables:
vector on the output side of the network. Not shown trajectory components, Euler angles (attitude) and
in Figure 7 is the fact that most nodes have a bias; accelerations.
this is implemented in the form of an extra weighted
link to the node. The input to the bias link is the The contributions that form the input vector
constant I which is multiplied by the weight are described as follows. Nineteen basic force and
associated with the link and then summed along with moment terms describe the influence of the control
the other inputs to the node. For further details inputs and of time-dependent flow field effects. Hull
concerning the operation of neural networks, the forces and moments are given by X, Y, Z K, M and N.
reader is directed to (Haykin, 1994), and for recursive The axial thrust component from the water jets is
neural networks to (Faller, et al., 1997). considered as two terms, the combined thrust from

A recursive neural network has feedback; the starboard side and from the port side, Tx,,.. and
the output vector is used as additional inputs to the T, -p,,. Because the water jets are steerable, sideways

network at the next time step. For the first time step, thrust components exist and are denoted as, Ty-....



and T,-,o,. Two restoring moments resulting from Table 4 Summary of network inputs.

disturbances in pitch and roll are written as K, and Input Description Jnpu
M,. Also included are additional moments in roll ts

and pitch that result from roll-pitch coupling, KRP X(t'), X(t'- A t'). X(t'- 4A t') 5

and M,. For operation in waves, two forces and
two moments are added: longitudinal and lateral Y(t'), Y(t'- A t'). Y(t'- 4A t') 5
wave forces and pitch and yaw moments, X,,e 

K... M,,.... and N .... The final input is the wave

elevation, 6 '- . These input terms are formulated K(t'), K(t'- A t'). K(t' - 4A t') 5

from knowledge of water jet rpm and nozzle angles,
geometry of the vehicle, and from output variables M(t'), MQt'-At').M.. -4At') 5
which are recursed and made available to the inputs, N(t'), N(t' - A t'). N(t - 4A t) 5
and from the available wave information. The
modules which define the input terms are referred to TX... (), Tx . (t - A t'), Tx -,... (t- 2A t) 3
as component force modules in Figure 6, and a
description of these basic inputs is provided in the Tx _ ,o,(t'), Tx _,,(t'- At'), Tx _ (t'- 2At') 3
next section.

Additional inputs are obtained by retaining T, ,,,, (t), T. (t' - A t). T-,,,, (t' - 4A t) 5

past values of the basic inputs. This gives the T ,,-4, (
network memory of the force and moment history
acting on the vehicle and permits the network to learn K,2 (, K W - A 0 2
of any delay that can occur between the application
of the force or moment and the response of the M, (t'), M, (t' - A t') 2
vehicle. For the hull inputs: X, Y, Z, K, M and N, 4
past values are retained. Two past values from each KRP (t'), K, (t' - A t) 2
of the two water jet axial thrust terms and 4 past
values from the two sideways thrust components are M, (t'), M, (t' - A t) 2
kept. One past value is kept for each of the restoring
moment terms. For the four wave force and moment X (t'), X,(t' - A t'). X (t' - 4A t') 5

terms, 4 past values are retained and 4 past values are
kept for the wave elevation input. The number of Yt'), Y(t'-At') .... Y t- 4A6)5
past values to keep is chosen empirically and appears M, (t'), M, (t' - A t'),. M (t- 4A t) 5
to be a function of the frequency response of the
vehicle. For example, retaining information for 4 N, At) ... (t'-4At) 5
past values implies the network is given information
about past events for a period of time required for the 51, (t'), 6s, (t-At') .... , (t - 4A t') 5
flow about the vehicle to travel 28% of the length of
the hull. u'(t'), v'(t'), W'(t'), p'(t'), q'(t'), r'(t') 6

Recursed outputs from the prior time step u'(t'- A t'), v'(t'- A t'), w'(t'- A t), 6
are used as six additional contributions to the input
vector. Furthermore, the output vector from one p (t' - At'), q'(t' - At'), r'(t' - A t')
previous time step is retained and made available as Total 91
six additional inputs. Knowledge of the output
velocities for two successive time steps permits the
network to implicitly learn about the accelerations of FORCE AND MOMENT INPUTS
the vehicle. A summary of the various contributionsthatmak up he nputvecor s prvidd inTabe 4Neural networks have an amazing ability to
that make up the input vector is provided in Table 4, identify and track nonlinear behavior linking a set ofand attention is next directed to a explanation of the inputs to a set of outputs. This innate ability can be
basic force and moment inputs, further augmented, however, by carefully

constructing physically motivated input and output
variables that form a well-posed problem. For this
task, inputs to the neural network were cast in the



form of hull forces (X, Y, Z) and moments (K, M, N) 1 n sin(a4,,)
acting on the vehicle. This input formulation is more T__ .. 0 -
general in the sense that training data may now (8)
originate from experiments or from simulations. The T o,, 1 -- sin(a,,) (

total forces and moments are determined by training Jor u
a set of feedforward neural networks, one for each
force or moment component, to predict X, Y, Z, K, M, where a is a constant amplification factor designed to
N from quantities that will be available on the input magnify the influence of these terms despite often
side of the RNN. Recall that these variables originate very small nozzle angles.
from controls, output variables which are recursed Righting moment inputs are provided to
and made available to the inputs and from variables account for disturbances in roll and pitch. The
which may be derived from these. Examples are: product of the moment arm and the weight of the
( n1, n2, 4, 4, u, v, w, p, q, r, a,/, q', r', ... ). Six vehicle creates a couple which acts to restore the
feedforward networks were then developed, and each vehicle to its undisturbed orientation. These
used a customized set of the inputs listed above, moments may be approximated by
They were trained and prepared for use prior to the =- G i
development of the RNN. Then, they were K -pg V GMTsin(9)
implemented as subroutines on the input side of the M, = -p g V GM, sin 0
larger RNN code. The X, Z, K, M, N outputs from
the feedforward networks were used as inputs to the where V is volumetric displacement, ( and 0 are
RNN at each time step. angles of roll and pitch, and GMT & GM, are the

These basic hull input terms were transverse & longitudinal metacenters. The
augmented by explicit expressions for axial and metacentric height is commonly decomposed into a
sideways thrust from the water jets, restoring difference between the distance from the center of
moments resulting from disturbances in pitch and roll buoyancy to the metacenter, BMT or BM, , and the
and wave elevation and forces acting on the hull, distance from the center of buoyancy to the center of
These terms were fashioned from the control
variables: water jet rpm, n,... and n o,,; and nozzle gravity, BG. BMT and BM, may be approximated

for small roll and pitch motions by IT /V and I/V,deflection angles: (',, and (', . Also available for
where IT and I are moments of inertia of the

the definition of the input terms are output variables

from the previous time step, which are recursed and wetted portion of the vehicle about the transverse or

made accessible to the input side of the network. In longitudinal centerline, respectively. Upper bounds

this manner a true simulation is preserved as only the on these moments for most ships satisfy

control histories and initial conditions of the vehicle IT < 1/12 B3L and IL < 1/12 BL3 , where B is the beam
are required to run the simulation. The following and L is the overall length of the vehicle. Replacing
paragraphs describe the creation of each of the input the fraction with a constant, the restoring moments
terms. may then be written as

The axial thrust component is assumed to be BL - s
related to the advance ratio, J = U/nD. To prevent K = -p gV B sin

code difficulties if n should drop to zero, the L (10)
reciprocal of Jbecame the actual input as shown in Mr=_ P  gVC(cL B L 3 IBG sin0
Eq. 7: V

1 n5,o, cos ,, This information, when available, can be explicitly
J .provided; alternatively, the simpler expressions

1 p cos p (7 Kr = -CTsin( p and M r =-CL sin0 , (11)Tx po, oc -

sprt0 U may be used, allowing the network to determine the

Similarly, the sideways thrust components were unknown constants.

expressed as: The additional moments in roll and pitch

that result from roll-pitch coupling, K, and M,
are defined as:



KRP = -p g V GMT sin (p cos 0 cos (p The results of these simulations proved to be very
(12) encouraging and are detailed next.MRP =-p g VGM L sin~cos~cos~p

As before, the simpler expressions given in Eq. 13 RESULTS

were used. The predictions shown here are for the full
scale catamaran, Sea Fighter, operating in sea states

K, = -CT sinq'cos0cosq( 4 & 5 off of the coast of California. The real-time

M, =-C, sin 0cos0cos (3 nonlinear simulation (RNS) results represent time-
domain predictions of a surface ship in random seas.

The specification of the wave field requires All simulations were run open-loop using the water
the heading angle, V/,, angular frequency, , and jet RPM and nozzle deflection angles as the control

amplitude, A, for each of the wave components. inputs. As such, there is no compensation for
simulation error via a feedback controller driving theThis data is used to construct the wave encounter smlto rdcin omthtemaue

ange, , he av nuber k an te wve simulation predictions to match the measured
angle, /1, the wave number, k, and the wave trajectory. The RNS is simply given the open-loop

encounter frequency, , as given in (Lloyd, 1998): control time-histories and the wave field as specified

2 by amplitude, frequency, and direction, and asked to.Q 2

/=.. - V'hp, k= - predict the complete time history of the ship motion
g in waves. This is a much more difficult task than

2 (14) when an automatic control system is used to drive the
and , = U cos fi simulation. In general, the only way to truly test the

g fidelity of a simulation is to run the simulation open-

Then, the wave elevation, 6,, and the wave slope, s,, loop using measured control inputs and to then
compare the resultant predictions directly to the

are computed using: measured response of the physical system as was
S(t) = A, cos(ol + 0i) (15) done here.

s, (t) = Ak sin(o)& + 0,)' A subset of nine of the maneuvers given in
Table 1 (125b, 126a, 126b, 127a, 127b, 128a, 128b,

and the force components and yawing moment are 129a and 129b) was used to develop the results.
given (Fossen, 1994) as These maneuvers were conducted at a speed of

N 10 m/s (20 kn) corresponding to a Froude number of
X (t)= _pgBLDcosfl si(t), 0.15. Of the nine runs, six were used to train the

simulation. The other three (126a, 127b, 128a) wereNY,,(t)= - gBLsin/si (t) set aside to test the ability of the network to makeB1 reasonable predictions for maneuvers similar to those

N in the training set, but not seen during the training.
M, (t)= - I pgBLD (E - B2) k2 cos(2/p) 6, (t) These are denoted validation or novel runs. Because

N 14=L the simulation has no a priori knowledge of these
N (t) Y pgBLD (E - B2) k2 sin(2/p) (t) maneuvers, they can be used to judge how well the

- 24 final simulation generalizes to novel conditions. This
(16) set of runs comprises a total of 5 different wave

encounter angles (37', 83', 128', 173' and 217°), and
The subscript i varies over the measured wave the validation cases span 3 different wave encounter
components. angles (83', 128' and 173'). These results represent

The basic inputs to the network have now the first set of predictions for a full scale vehicle in
been defined. They consist of hull forces and waves in the open ocean operating at multiple wave
moments, axial and sideways thrust components from encounter angles.
the waterjets, restoring moments to disturbances in The ship is fitted with a pair of skegs that
roll and pitch, and wave forces and moments acting may be operated in a fixed or active mode as
on the hull of the vessel along with the wave described in (Rossignol, 2006). For all of the
elevation. The description of the architecture of the maneuvers in Table 1, the skegs were maintained in a
neural network is now complete. The training of the fixed position with the starboard at -6.8' and the port
network has been carried out in a manner consistent at -5.5' . The reversing bucket position channels
with that described previously, (Hess, et al., 2006a). (Griggs, 2007) for each of the four water jets

remained at 100% indicating that they did not serve



as controls for any of the maneuvers presented in the with this behavior. Overall, the results are extremely
results. good and demonstrate that the RNS approach appears

During the data preparation phase after the to be an effective method for simulating controlled

trial had concluded, examination of the four water jet heading maneuvers by Sea Fighter in the open ocean.

rpm signals revealed that they did not vary over the One of the difficulties presented by this set
24 maneuvers listed in Table 1, although these runs of data was the type of maneuver itself. By its very
were conducted at four different speeds. As a nature a controlled heading maneuver, in which the
substitute for this problem, the powering data for Sea vehicle primarily travels on a straight track at
Fighter, given in (Griggs, 2007), was consulted and constant speed, is one for which most of the variables
used to supply constant rpm values, n,... and no,.,, besides speed, are very close to zero. This situation

for each speed. This solution is viable because the is more difficult for the neural network to train to and

maneuvers are conducted at constant speed; however, generalize well. These results show that it can be
any small rpm variations due to speed corrections are done. Further, these results are consistent withaost. previous efforts for the prediction of various kinds of

ship maneuvers for free-running models operating in
Figure 8 shows one of the training files, controlled conditions in a test basin and for full scale

128b. In all cases, the commanded control inputs and ships operating in the open ocean, (Hess, et al.,
initial conditions are the only inputs to the simulation 2006a, 2006b).
and the RNS predicts the ship trajectory, speed, roll,
pitch, and heading. These predicted values are then CONCLUSIONS
compared directly to the measured data in order to These early results demonstrate an emerging
determine the simulation fidelity. The two upper capability for predicting 6-dof ship motions in both
plots are one of the rpm and one of the nozzle angle regular and irregular waves. The paper has described
control signals which reflect the corresponding further improvements to the RNN surface ship
commanded control inputs to the ship. The next simulation tools and has demonstrated the capability
plots, in all cases, are speed, roll, pitch, heading (with by producing 6-dof predictions of Sea Fighter
the abscissa given as time) and trajectory operating in sea states 4 & 5. The paper, and in
components, x vs. y. In all graphs the measured data particular, the full scale ship data in irregular waves
are shown in black, and the RNS predictions in red. has also pointed out several areas where
For Figure 8, additional plots of the direct outputs of improvements need to be made.
the simulation, three linear velocity components and
three angular velocity components, are given. For Sea Fighter operating in the open ocean,

in irregular waves, the phase angle for the wave
As can be seen, the trajectory of the vehicle elevation equation was not known. In model tests,

is predicted very accurately with only a minor the phase angle can be estimated from the measured
deviation near the end of the run. Speed, heading, depth and the regular wave amplitude, similar
pitch and roll are also recovered very nicely. As methods for estimating the phase angle need to be
thes are derived quantities, the level of accuracy is developed for full scale ships in the open ocean. A
due to the high degree of fidelity in the velocity better method for determining and representing the
outputs predicted by the simulation. The fact that the real wave elevation and wind conditions also needs to
predictions match extremely well to the measured be developed for the RNN simulations in irregular
data indicate that the problem is well posed to the waves. We assumed a single regular wave, dominant
recursive neural network, and that the simulation is swell component, and no wind since this was the only
able to learn the relationships between the input data available from the buoys (one wave frequency,
controls and the output states. one wave amplitude, one wave direction, and no

Shown in Figures 9-11 are all three of the phase angle). One approach to answering these
validation maneuvers. In each case the trajectory is questions may be to use the ship as a sensor in order
predicted remarkably well over the entire extent of to estimate as much as possible about the waves and
the run with only minor deviations near the end. The environmental conditions. Techniques along these
speed is recovered almost perfectly, with the lines are being explored for model scale data with
exception of the minor fluctuations. The pitch and known regular wave components and should be
heading signals show greater deviations, nevertheless explored for full-scale ships in the open ocean.
the overall nature of the response is predicted Overall, while the RNN simulations at full-
accurately. The roll response of the vehicle is very scale yield good results, it is clear that additional
small; the simulation is having the most difficulty work remains to be done in order to better model the
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500 environmental forcing functions, waves and wind, as
400 well as the corresponding force and moment

300 equations which form the inputs to the RNN
200 simulation. Further, at full-scale, additional data100 issues exist which must be dealt with. For example,

how do you accurately measure or estimate
depth/heave? How do you readily determine the

6wave field being encountered? Clearly, a singleS 6.0

- 2.0 frequency and amplitude corresponding to the
0.0 dominant swell will not be sufficient in most cases.

-2.0
-4.0 To summarize, the results demonstrate the
-- capability for predicting 6-dof ship motions at full-scale in sea states 4 & 5 using a nonlinear time

16.0 -domain technique. However, the full scale ship
12.0 simulations have also pointed out several areas where

8.0 , /improvements can and should be made to the RNN
D 4.0 ,simulation approach.
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